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A Mingled Yarn
Jack Marr

Georgia Tech

The behavior of nonliving and living systems is generally viewed as being qualitatively different.
The key difference is often summarized by saying that whereas living systems are complex, non-
living ones are simple. This distinction is often the basis for claiming essential differences in
conceptual stances, methods, and theories between scientific fields. I argue first that nonliving sys-
tems can display the unpredictable, irreducible, irreversible, and emergent-in sum, complex-
properties of living systems. Then I discuss an emerging field called complexity theory, the prin-
ciples of which offer the promise of bringing quantitative unity to an enormous range of phenomena,
living or dead.
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The web of our life is of a mingled yarn, good
and ill together: our virtues would be proud, if
our faults whipped them not; and our crimes
would despair, if they were not cherished by our
virtues. (William Shakespeare, All's Well That
Ends Well, IV, iii)

Radical behaviorism is a movement
continually attempting two seemingly
incompatible activities: defining itself
to often hostile outsiders, and defining
itself to often confused but committed
insiders. To complicate matters further,
the primary strategy for behaviorism's
finding itself seems to be to search for
its home among some group of puta-
tive nonintersecting conceptual sets-
mechanism, contextualism, selection-
ism, molarism, or whateverism-in an
apparent attempt to achieve status
through simplification.
Why all this effort at conceptual bot-

anizing? I see at least two reasons, one
honorable, the other not. The latter is
reflected in amplifying some perspec-
tive of behaviorism to conform to a
more clearly dominant movement (i.e.,
cognitive psychology) for political rea-
sons, as if the mouse might curry favor
from the cat by exclaiming that both
possess whiskers. Why should the cat
care? Such an impudent mouse should
and would be quickly swallowed up.
The intellectually honest efforts are
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devoted to characterizing behaviorism
so as to encompass the complexity of
behavior as we observe it. This is, in
part, a reaction to what is seen as over-
simplified accounts of behavioral phe-
nomena emerging largely from the ex-
perimental behavioral analysis com-
munity. A key perspective of these cat-
egorizing efforts is that the model of
physics as that science whose methods
and both qualitative and quantitative
approaches are most appropriate to the
analysis of behavior is woefully inad-
equate, and that we should look to oth-
er sciences such as evolutionary biol-
ogy as our model.

I should like first in the course of
this essay to present this flee-from-
physics argument, then to discuss why
I believe it to be, if not flawed, then
certainly narrowly based. In the course
of this analysis I will try to provide
some functional criteria for the term
complexity, and sketch very briefly an
emerging field known as complexity
theory, which is providing some im-
portant quantitative insights into fields
as seemingly diverse as physics, chem-
istry, evolutionary biology, embryolo-
gy, genetics, ecology, economics, and
international relations (e.g., Casti,
1994; Coveney & Highfield, 1995;
Saperstein, 1995; Waldrop, 1992).

PHYSICS VERSUS BIOLOGY
Ernst Mayr has been a major figure

in the history and philosophy of biol-
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TABLE 1

Physics versus biology/behavior

Universal Particular
Essentialism Variation
Determinism Stochasticism
Reductionism Emergence
Transformational Variational
evolution evolution

Temporal Temporal
symmetry asymmetry

Immediate Historical
causation causation

Functional Functionalism
relations

Simplicity Complexity

ogy and has written extensively on the
place of biology in the community of
sciences. His arguments closely paral-
lel those of many behaviorists in defin-
ing a special place for a science of be-
havior; indeed, he is often quoted by
them. His contrasts of biology and
physics, as exemplified in his essay "Is
Biology an Autonomous Science?"
(1988) and in his famous text The
Growth of Biological Thought (1982),
include virtually all the major criteria
that various behaviorists (e.g., Baum,
1994; Chiesa, 1994; Donahoe & Palm-
er, 1994; Hayes, Hayes, & Reese,
1988; Morris, 1993; Reese, 1994; Zeil-
er, 1992) have espoused as distinguish-
ing behaviorism or behavior analysis
from something they call "mecha-
nism," where the term mechanism to
them means primarily the methods and
general conceptual framework of phys-
ics. Table 1 is an adaptation of Mayr's
criteria, including some seasoning
from the behavioral literature.

Let me examine briefly and uncriti-
cally these criteria because (a) they set
the stage of much of the succeeding
discussion, and (b) the terms do not
necessarily have obvious meanings.
Also, some of these criteria may over-
lap or be imbedded in other criteria, as
I will try to point out.

Universal Versus Particular
Laws or principles in physics are be-

lieved to apply without restrictions of

time and space; physics would be the
same in another galaxy as it is here on
earth. For example, a fundamental pos-
tulate of relativity is that the laws of
physics do not depend on the state of
motion of an observer. Living beings,
including their behavior, are generally
viewed as exceptions in the universe,
thus requiring restrictions in time and
space. Individual differences are con-
siderable; generalizations are relatively
few; many exceptions are the rule.
Particular is a term strongly related to
contextual. At least some who call
themselves contextualists uphold this
distinction in the face of the alterna-
tive, mechanism.

Essentialism Versus Variation

In a somewhat similar contrast to the
"universal versus particular" above,
physical sciences are said to be based
on a reductive perspective wherein
composite structures are comprised of
and understood on the basis of funda-
mental particles with unvarying prop-
erties. Biological systems, on the other
hand, demonstrate considerable varia-
tion, with no agreed-upon fundamental
units; indeed, variation fuels the engine
of natural selection and thus evolution.
Some behaviorists talk as if selection-
ism stands apart from mechanism (e.g.,
Baum, 1994; Donahoe & Palmer,
1994).

Deterministic Versus Stochastic
Classical physics is everyone's epit-

ome of a deterministic predictive the-
ory. Given initial conditions, Newton's
laws, for example, can predict the mo-
tion of a body in space with extraor-
dinary precision; enough, say, to send
a Voyager spacecraft a billion miles to
photograph Neptune. As the mathe-
matician John Casti (1994) has pointed
out, "the laws governing planetary
motion are about the closest thing the
human race has yet discovered to a
sure thing" (p. 87). In contrast, biolog-
ical and behavioral events may be very
difficult or even impossible to predict.
For example, from the perspective of
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the Cambrian period, it would have
been impossible to predict the kinds of
creatures roaming around in the Juras-
sic. At best, it appears, we must be
content with a considerable role for
chance in the affairs of man and beast.

Reductionism Versus Emergence

This distinction addresses the issue
of whether phenomena at one level of
observation are totally accountable by
events taking place at a subadjacent
level, or, whether novel or qualitatively
different events can emerge unpredict-
ably from any consideration of the re-
ductive components. Another way of
expressing this is to consider if a sys-
tem is always analyzable or under-
standable in terms of the properties of
its constituents.

Transformational Versus Variational
Evolution

Physical systems are said to change
largely through transformations involv-
ing internal, or what might be called
constituent, mechanisms. This is con-
trasted with selective processes acting
in conjunction with variants. Compare,
for example, stellar evolution with or-
ganic evolution.

Temporal Symmetry Versus Temporal
Asymmetry

Classical mechanics, as do relativity
and quantum mechanics, reflect tem-
poral symmetry. That is, changing the
time t to - t does not result in a differ-
ent law. A raindrop accelerating to-
ward earth does so under an attractive
force -F. If that raindrop accelerated
away from the earth, it would do so
under a repulsive force +F of equal
magnitude but opposite direction. The
law remains the same. Biological sys-
tems, including behavior, seem to man-
ifest temporal asymmetry. For exam-
ple, it would be unimaginable (al-
though not absolutely impossible) for
natural evolution to reverse itself along
the exact same pathway to restore the
dinosaurs to their original forms and

numbers. Behavior analysis, too, is de-
scribed as an historical science as op-
posed to the apparent ahistorical char-
acter of a mechanistic physics.

Immediate Versus Historic Causation

The traditional billiard-ball perspec-
tive of physics sees events at one mo-
ment completely determining, at least
in principle, what happens the next
moment, and so on. This idea implies
a strict determinism. Biobehavioral
systems, however, are said to demon-
strate historical causation, whereby
present events are typically determined
by a history extending perhaps far back
in time. Such systems can be said to
have a memory. The overall distinction
is strongly related to that between
proximal versus distal causes, deter-
minism versus chance, predictability
versus unpredictability, or predictabil-
ity versus interpretation. In the last
contrast, we cannot predict some phe-
nomena using an organized system of
quantitative laws, but rather must be
content with, at best, a coherent inter-
pretation of the observed phenomena
consistent with some encompassing
theory. Typically, although not always,
such a theory is qualitative, comprised
of verbal constructs and concepts, as
opposed to a mathematical structure.
Modem cosmology is a notable excep-
tion.

Functional Relations Versus
Functionalism

Zeiler (1992) expresses this distinc-
tion succinctly:
Causation looks back in time to describe how
the behavior is determined. Function looks for-
ward to describe what the behavior accomplish-
es. ... The ability to find clear cause-effect re-
lations provides no perspective on whether or
not the behavior is worth studying. ... Accom-
plishment puts behavior and subsequent causal
analyses in context. (pp. 417-418)

Simplicity Versus Complexity
This contrast represents either a

source from which all the other dis-
tinctions flow, or, alternatively, a sink
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into which all the others flow to define
complexity itself. I see the distinction
as the sum of all the previous contrasts.
Mayr, for example, continually empha-
sizes that biological systems are far
more complex than any nonbiological
system. Moreover, for him this means
basic qualitative differences exist be-
tween the living and the nonliving, and
thus there exists the necessity of an in-
dependent science of biology.

Because the listed criteria can serve
to define complexity in our descrip-
tions of nature, I should like to focus
primarily on the last contrast to indi-
cate how we might bridge the concep-
tual chasm between the quick and the
dead.

BRIDGING THE CHASM

There are a number of questions oc-
casioned by asserting that qualitatively
distinct features arise from complexity.
What is meant by complexity? Alter-
natively, what is meant by simplicity?
If some agreement can be reached on
the distinctions, then additional ques-
tions arise. How can complexity arise
from simplicity? How can simplicity
arise from complexity? The latter ques-
tion could originate, for example, from
consideration of Skinner's (1957) com-
ment that Newton's law of gravitation
may not be simple, but is far simpler
than anything the layperson might say
about the same thing.
From the outset, it seems clear that

simplicity and complexity are not nat-
ural catagories, but are dependent on
the interacting contingencies between
the system of interest and the observer.
As Wittgenstein (1968) emphasized in
the Philosophical Investigations, the
terms simple and complex (or compos-
ite) are relative to context. Here is his
famous comment:

Suppose that, instead of saying "Bring me the
broom," you said, "Bring me the broomstick
and the brush which is fitted onto it!"-Isn't the
answer: "Do you want the broom? Why do you
put it so oddly?" (p. 29)

Although we might all agree that
context is an essential factor in defin-

ing complexity as opposed to simplic-
ity, we cannot get very far with this if
we are to treat the distinctions serious-
ly. Essentially, we must address the
conditions occasioning the use of such
terms. No matter how complex we
might consider a flea, all of us would
likely agree that an elephant is some-
how more complex. The task of mak-
ing the ineffable effable involves not
only a possible set of examples but
also a general perspective in which to
place the examples. As a beginning,
we might view relativity of complexi-
ty, at least within the context of the
distinctions sketched earlier, as imply-
ing a quantitative as opposed to a qual-
itative difference. Every contrast men-
tioned earlier to distinguish the science
of physics from that of biology (and
with it, behavior), I will assert, could
be challenged not only in the abstract
by appealing to a quantitative argu-
ment but also by example from con-
structed or natural systems.

Underlying the quantitative argu-
ment I want to advance resides a uni-
fying approach: dynamical systems the-
ory (e.g., Baker & Gollub, 1990;
Guckenheimer & Holmes, 1986;
Moon, 1992). The term dynamical sys-
tem may be familiar to some as refer-
ring to chaotic dynamics. Although
chaotic systems are dynamical in the
sense I want to develop, they represent
only a part of the field of dynamical
systems.
Dynamical systems encompass a

huge variety of phenomena ranging
from mechanical, electrical, and chem-
ical processes to computer programs to
neural networks to the economic mar-
ketplace and to, yes, I will argue, bio-
behavioral phenomena. Some of the
examples and applications are old, but
many reflect very recent collaborative
efforts among physicists, mathemati-
cians, meteorologists, economists, bi-
ologists, engineers, physiologists, phy-
sicians, ecologists, chemists, computer
scientists, and others who have come
to talk of many things-of turbulence
and taffy, of populations and planets,
of pendula and percolation, of arryth-
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mias and attractors, of clouds and
coastlines and catastrophes, of stocks
and spots and storms, of beams, basins,
and bifurcations, of ferns, faucets, and
fractals. Their goal is to generate what
they call "reality rules" (e.g., Casti,
1992), that is, mathematical models of
the everyday world-the booming and
the buzzing confusion, the elegant and
intricate patterns, the plain messiness,
and, of course, the slings and arrows of
outrageous fortune-all features of the
biobehavioral domain. As I will point
out, these kinds of models can display
the stochastic, emergent, historical, se-
lective, functional, and irreversible fea-
tures that are supposed to characterize
only living, evolving, behaving sys-
tems.
The point of all this is to bring to-

gether communalities of nature, bridg-
ing fields that have closely defended
their domains by highlighting their pu-
tative conceptual and methodological
differences.

Significant communalities do not
imply identity. The theoretical physi-
cist who is wrestling with a mathemat-
ical group categorizing system for el-
ementary particles seems to be doing
something different from the taxono-
mist who is deciding if a newly dis-
covered creature belongs to a known
species. Yet it could be argued that
there are family resemblances to all in-
stances labeled as categorizing, else
what function does the term have?

THE MECHANICS OF
COMPLEXITY: DYNAMICAL

SYSTEMS THEORY

As Casti (1994) asserts, complexity
is the mother of surprise. Surprise oc-
curs when our models of nature are
faulty. In our efforts to understand na-
ture we make assumptions (e.g., lin-
earity) that allow us to derive relatively
easy conclusions about the past, pres-
ent, and future states of the world. Al-
though this sort of approach has taken
us far along the road to apprehending
some of the features of nature, we are
only just beginning to see that we have

been residing in a crystal palace of
special, highly simplified cases. The
world around us, the world we are re-
ally interested in as scientists, is full of
surprises-in physics, chemistry, biol-
ogy, and behavior. The sources of these
surprises are many. My task is to show
how some of these sources can provide
conceptual bridges between the con-
trasting stances briefly introduced ear-
lier. They include stochastic processes,
chaotic behavior, instabilities (cata-
strophic or otherwise), noncomputable
systems, irreducible systems, many-
variable interactions, combinations of
positive and negative feedback (with
and without delays), emergence, and,
of course, combinations and interac-
tions of all of these. There will not be
space here to discuss all of these pos-
sibilities, but only to look at a few
cases as they bear on the distinctions
raised earlier.
As mentioned before, the integrative

perspective is dynamical systems the-
ory. In its most abstract form a dynam-
ical system consists of two compo-
nents: a manifold and a vector field.
The manifold is a space (sometimes
called a phase space or a state space)
in which motions or changes in the
system are pictured. It is the playing
field of the dynamical system. The vec-
tor field characterizes the motions
within the manifold, that is, it specifies
the rules of motion. A simple example
is the motion of pendulum. Imagine a
weight attached to a rigid rod suspend-
ed loosely by a nail. The weight is free
to move 360 degrees in a plane. What
are the properties of this system? How
do we describe the possible states of
motion? These are fundamental ques-
tions asked of any dynamical system.
If the weight is displaced from its nor-
mal downward vertical position, it will
swing back and forth with ever-de-
creasing displacement until it finally
stops in the original downward posi-
tion. It will remain there forever unless
displaced again, in other words, sub-
jected to some perturbation.

States of motion of a dynamical sys-
tem (including rest) that are achieved
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after transients die out are called at-
tractors. An attractor is a point or set
of points in the manifold that may be
fixed, periodic, aperiodic (described by
a complex surface like a doughnut),
stochastic, or, as in the case of a cha-
otic system, strange. A state of rest is
a fixed point attractor and is represent-
ed by a fixed point in the phase space.
If there were no friction to counter-
force displacement, then the pendulum,
once displaced, would swing back and
forth forever. The attractor in this case
is a limit cycle, defining periodic mo-
tion. The geometry in phase space
would be a closed curve. It is possible
to excite a pendulum arrangement to
produce a strange attractor-instead
of a simple closed curve, the path can
wander around forever, never repeating
or even intersecting itself-a mingled
yarn. If one makes a slice (called a
Poincare section) through the phase
space of this kind of attractor, one can
watch on a computer screen as the tan-
gled orbit cuts through the plane.
Points accumulate in the time evolu-
tion of the chaotic system as they ap-
pear randomly in a bounded region like
stars at dusk. Once a sufficient number
has appeared, however, one can discern
a wispy order with whorls and folds
inside whorls and folds, and so on and
so on-a section through the mingled
yarn (see Figure 1).

Despite their name, strange attrac-
tors are far more common in nature
than any another kind. Studies of
strange attractors are part of a subfield
of dynamical systems known as cha-
otic dynamics. Here we find a signifi-
cant challenge to traditional perspec-
tives on determinism, predictability,
and chance, which has implications for
some of the putative distinctions be-
tween physics and biobehavioral phe-
nomena. Many dynamical systems
have been modeled (in physics, popu-
lation biology, meteorology, etc.) that
yield strange and other kinds of attrac-
tors generally describing the data ob-
tained through observation and exper-
iment. I say "generally" because the
correspondences can never be exact;

unpredictability is inherent in the dy-
namics. The rules (actually, nonlinear
differential or difference equations) are
strictly deterministic (space does not
allow me to discuss the very significant
and difficult area of stochastic equa-
tions), but the application of those
rules yields unpredictability; in other
words, determinism and predictability
are not equivalent. Thus, two important
emphases here: (a) Deterministic mod-
els do not necessarily yield predictable
outcomes, and (b) complex data do not
necessarily require a complex model.

Thus, asserting that physics deals
primarily in deterministic and therefore
predictable systems, whereas in biobe-
havioral systems chance is the rule, is
obviously simplistic. Chaotic dynamics
has been useful for modeling systems
in both fields; where strange attractors
are involved, predictability is lost. The
only way to know what will happen is
to let it happen. This is actually anoth-
er way to view complexity, namely
that the complexity of a system is di-
rectly proportional to the shortest pos-
sible description of it. A random se-
quence of events means that the only
way to describe it is simply to specify
the sequence, in other words, there is
no algorithm or rule shorter than the
sequence itself. Rule governance final-
ly meets contingency-controlled be-
havior.
A fundamental defining feature of

chaotic systems is sensitivity to initial
conditions. In linear systems a small
change in initial conditions produces
only linear effects in time. In nonlinear
chaotic systems, the effects grow ex-
ponentially with time. This has impli-
cations for the limitations of measure-
ment as well as the effects of pertur-
bations to a system. If you have exact-
ly the same initial conditions, the
system will unfold in exactly the same
way; this is simply another way of say-
ing it is deterministic. But, of course,
there is no way for this to happen. In
the real world, precision is always lim-
ited and change always occurs. Thus,
determinism in this case is not practi-
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Figure 1. The top frame shows a phase portrait (velocity vs. position) of the motion of a member
of a class of dynamical systems exemplified, for example, by the vibrations of a buckling beam
under compression. The beam buckles to the right or left seemingly at random, but not really. This
is a strange attractor. As the beam buckles to one side or the other, it shakes a bit, then after a
while shifts to the other side, shakes a bit more, then shifts back again, and so forth. It is impossible
to predict how much it will shake in place, or when it will shift to the other side. The bottom frame
shows a Poincare section, cut through the middle of the frame above, from right to left. This is
another strange attractor, actually a fractal. As a fractal, it would show structure at any magnification.
Practically, of course, only a finite number of points can be displayed, in this case about 10,000.
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cally different from random. Figure 2
illustrates an example.
A fundamental aspect to any dynam-

ical system, chaotic or not, is its degree
of stability. Returning to our pendu-
lum, the fixed point attractor with the
weight hanging down is clearly stable.
If locally disturbed in any way, the
weight will eventually return to that
point. Imagine, however, very carefully
moving the weight upward to its max-
imal point on the vertical so that it is
just balanced at the top. This point is
an unstable fixed point, actually a re-
pellor. Any deviation, however small,
from this point and the weight will fall
away, eventually to return to the stable
point at the bottom. Clearly, chaotic
systems are unstable because of their
sensitivity to initial conditions and
their nonperiodic, random properties.
Biochemical, physiological, genetic,
embryological, ecological, and behav-
ioral systems all are dynamical pro-
cesses that show varying degrees of
stability and instability. In order to per-
sist, such systems must show at least
local stability; that is, small deviations
do not disrupt the system so that it
wanders off to some other state, in-
cluding ceasing to function altogether.
Our hearts beat on hour after hour in

a quasi-periodic way under conditions
of our rest and of our racing. At some
point, however, a perturbation can lead
to ventricular fibrillation, a chaotic
state with an often fatal outcome. Our
lives may thus dissolve in chaos.
A population in the absence of any

outside influences displays genetic sta-
bility, expressed by the classical Har-
dy-Weinberg law. However, an inter-
active combination of mutation, selec-
tion, migration, disturbances in the
ecology, and random genetic drift may
lead to completely new species and the
disappearance of the old.
The dynamical systems we behavior

analysts study in the laboratory, con-
trolled by contingencies of antecedents
and consequences, show varying de-
grees of stability. Small ratio schedules
engender an almost periodic two-state
performance. If we increase the ratio

beyond a certain value, the behavior
becomes more and more unstable
while maintaining some of its original
two-state character. Ultimately, only
one state prevails-not responding.
A major concept that describes how

systems respond to changes in condi-
tions is bifurcation. The most famous
example is found in May's logistic
equation describing population dynam-
ics. When the parameter specifying
rate of fecundity of a generation is in-
creased, at first the population increas-
es monotonically. Then at some critical
value of the parameter, the population
begins to cycle up and down, in other
words, a bifurcation in population val-
ues occurs. Increasing the parameter
further produces more and more bifur-
cations so the population takes on
more and more values. Eventually, all
chaos breaks loose; the population can
take on any value within a range. With-
out getting into any deeper technicali-
ties here, the main point is that dynam-
ical systems can take on new character
with changes (sometimes very small
changes) in controlling parameters.
The most striking cases display catas-
trophes. Just one more person walking
onto a crowded bridge may cause it to
collapse. This is by common judgment
a qualitative change in the system; one
minute you have a bridge, the next you
have a disaster. Nevertheless, there is
an overarching quantitative approach
to understanding the system; a quali-
tative change is predictable from a
quantitative model.

This raises the tricky problem of
emergence. We have already seem that
even relatively simple nonliving sys-
tems can behave in surprising ways.
But emergence carries an explicit an-
tireductionist flavor to it. Something
appears to be unpredictable from
known properties of its constituents.
But this too is an old story in the phys-
ical sciences. To begin with a simple
example, temperature is a molar prop-
erty of matter; it can be said to emerge
from the statistical mechanics of zil-
lions of atoms and molecules. The old
cliche about not understanding any-
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Figure 2. The top frame shows a phase portrait (velocity vs. time) of the motion of a bouncing
ball on a vibrating table. Think of a ping-pong ball sitting on a table during an earthquake. The
bottom frame is a portion of the top magnified to show stochastic motion. The points are distributed
randomly. A deterministic model produces random behavior.
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thing about water from properties of
hydrogen and oxygen is not the case.
It is possible to know something by
calculating the quantum mechanical in-
teractions of hydrogen and oxygen. In
most cases, however, calculations of
properties of matter are limited by their
complexity. No one has calculated that
sodium and chlorine should form a cu-
bic structure to make salt, or has been
able to predict the tertiary structure of
proteins from their sequence of amino
acids.

Still more interesting, and pertinent
to making strong distinctions between
studies of the living and the nonliving,
is the old problem in mechanics known
as the N-body system. I said earlier that
the classical mechanics of planetary
motion is the epitome of everyone's
idea of a deterministic, reductive sys-
tem. From the start, its reductive mode
is, in Nagel's (1979) words, homoge-
neous, as opposed to heterogeneous
(see also Marr, 1992). No one would
or could calculate the motion of a plan-
et around the sun by considering how
gravity acted on each of the atoms of
the planet! That would be real reduc-
tionism, and would make the problem
infinitely difficult to solve. Besides,
what did Newton know about atoms?
In fact, he showed that breaking up a
body into pieces was generally unnec-
essary; just treat the problem as if all
the mass were concentrated at the cen-
ter.
The deterministic feature of Newto-

nian mechanics is highly overrated, as
the discussion of chaos should indi-
cate. But even within that pristine
world of planetary motion, there is
complexity aplenty. When asked to de-
scribe the motion of the earth around
the sun (a two-body problem), a soph-
omore physics student should be able
to give a good account, including a
derivation of Kepler's laws. But give
this student a problem with three iden-
tical bodies interacting gravitationally,
and neither she nor anyone else knows
how to calculate how this system will
move. Numerical simulations under the
special condition that one of the bodies

has a negligible effect on the other two
show an astonishing mingled yarn of
orbits (Figure 3). The essential diffi-
culty is that the system cannot be taken
apart to consider how each separate
body interacts with the other two. In a
word, the system is irreducible. Sys-
tems with interacting variables may
display surprises that are not predict-
able by taking the effects of each vari-
able into account and then adding them
up. This is simply another way of say-
ing that the system is nonlinear.

Behavior can be full of surprises be-
cause it is virtually always the outcome
of many interacting variables. Consider
the initial conditions we label as mo-
tivational variables. These modify the
reinforcing, punishing, discriminative,
and eliciting effects of stimuli. Exam-
ples include deprivation, stimulation,
history, context, and various neuroen-
docrine states. In any given situation,
all and more of these classes of vari-
ables may interact nonlinearly to set up
a pattern of behavioral events. No
wonder Mayr asserted that biology
deals primarily with particular events
with restricted principles, as opposed
to the universal ones in physics. But all
science deals with particular events,
and as I have argued, surprises occur
everywhere, and for similar reasons.

DYNAMIC ORGANIZATION:
THE EDGE OF CHAOS

The right combination of stability
and instability can lead to new and
complex patterns of dynamical orga-
nization. This is a central dogma of dy-
namical systems theory as it attempts
to encompass complexity. Living sys-
tems, for example, are said to sit "on
the edge of chaos," a phrase I will at-
tempt to clarify shortly.

Emergence in dynamical systems
has been expressed in recent times by
the unfortunate phrase "self-organiza-
tion." Through a combination of pos-
itive and negative feedback, nonlinear-
ities, and interacting variables, patterns
of organization can emerge that are not
clearly the outcome of any one con-
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Figure 3. A simplified but irreducible three-body system. This is how, say, an earth-sized planet
might orbit a double-sun system. The planet wanders aimlessly around one star, then, unpredictably,
moves over to wander aimlessly about the other. Imagine trying to figure out what year it is!
Actually systems of this kind are likely to be unstable. The little planet would eventually be sling-
shot out into endless space.

stituent or an additive combination of
them. Phase transitions in thermody-
namics provide many examples. Con-
sider water on a winter day freezing on
the outside surface of a window. The
change from the essentially random ar-
rangement of water molecules in a liq-
uid drop to the beautiful crisscross,
brushy, tree-like structures sweeping
across the glass is not a property pre-
dictable from individual water mole-
cules. What we view with awe is the
dynamical organization of perhaps 1020
or more molecules. Such phenomena
are ubiquitous in nature-in fluid flow,
convection, crystals, hurricanes, torna-

dos, sand dunes, galactic whorls,
shapes of trees and leaves and flowers,
proteins and DNA and viruses, and pi-
geons, possums, and people.
Our understanding of the develop-

ment of these kinds of structures is
minimal; for the most part what under-
standing we have comes from system-
atic observations, doing experiments,
and building mathematical or other
theoretical models.
We have already looked at nonlinear

systems with interacting variables. To
look deeper into the dynamics of or-
ganization we need to consider feed-
back processes. Here the state, or out-
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put, of the system feeds back to modify
the system. Negative feedback contrib-
utes to stability; deviations from some
state provide forces that tend to return
the system to its original state. Regions
of the manifold where, despite pertur-
bations, the system returns to an attrac-
tor are called basins of attraction. Thus,
there is a direct relation between the
concept of a stable attractor and nega-
tive feedback processes.

Whereas negative feedback contrib-
utes to stability, positive feedback
leads to change. The proper combina-
tion of the two leads to dynamic pat-
terning. The neuron is a system whose
resting potential resists change until
the change is great enough to produce
a positive feedback relation between
the membrane potential and the per-
meability of the cell to sodium. The in-
flow of sodium in turn reduces the
membrane potential which leads to
more sodium influx, and so on, and
BANG, an action potential occurs.
Once this happens, a refractory period
follows, during which membrane
mechanisms restore the resting poten-
tial of the cell through negative feed-
back processes.
The interplay of positive and nega-

tive feedback can result in remarkable
dynamical patterns in chemical reac-
tions (see, e.g., Murray, 1993). For ex-
ample, autocatalytic systems of chem-
ical reactions, wherein the products of
reactions catalyze further reactions in a
kind of cycle, can produce in the re-
actant vessel moving waves and spirals
of extraordinary beauty. Autocatalytic
processes combined with diffusion
mechanisms appear to be responsible
for colorations and other morphogenic
features of organisms. Thus, the leop-
ard gets its spots from chemical dy-
namics. Biochemical pathways in the
body have complex dynamics of many
sorts and are essential to the integrity
of living processes. Autocatalyic reac-
tions are thought by some to have been
an important step in the origin of living
systems.

In the operant conditioning labora-
tory, we see the development and

maintenance of complex patterns of re-
sponding under various contingencies
of reinforcement. How do these pat-
terns emerge? There is discernible
structure at several levels of analysis
from sequences of interresponse times
to interreinforcement intervals to over-
all day-to-day patterns and beyond.
The effect of reinforcement is to in-
duce change through selection. Rein-
forcement effects depend on the initial
states of the system, for example,
where in time, or what features of re-
sponding are occurring. As this contin-
ues, the system is changing, so rein-
forcement acts on a different pattern,
and so on. The emerging patterns of
behavior and the pattern of reinforce-
ment delivery are in a kind of dynamic
dance, a flowing partnership between
the effects of patterns of reinforcement
on patterns of responding and the
countereffects of patterns of respond-
ing on the patterns of reinforcement.
Together they typically produce some
metastable pattern we might identify
with a particular schedule (e.g., fixed
interval, variable ratio, etc.). (For some
examples of dynamical perspectives on
behavior, see the special issue of the
Journal of the Experimental Analysis
of Behavior on behavior dynamics,
May 1992.)
The concept of feedback function in

the description of operant contingen-
cies is a great advance. These functions
generalize the concept of contingency
and allow us to explore a whole new
world of behavior-consequence rela-
tions. Recently, Jack McDowell at
Emory University has begun this work
on a theoretical level; it promises to
take the field of contingency descrip-
tion and analysis into the 21st century.
As mentioned earlier, living systems

are said to sit at the edge of chaos. Al-
though there are important exceptions,
living processes would not function ef-
fectively, with the proper responsive
dynamic patterns, if they remained in
a chaotic state. Yet, as we have seen,
the combinations of nonlinearity, pos-
itive and negative feedback, interac-
tion, dissipation, and irreversibility are
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the ingredients of recipes for complex
patterns, including chaos. Those com-
plex patterns of both living and nonliv-
ing systems so common in nature can
be but short steps away from two ex-
tremes-the static, bland, or boringly
regular world of the simple on the one
hand; or, on the other, the wild, unsta-
ble, and potentially risky world of the
stochastic.

THE ARROW OF TIME

The analysis of feedback leads nat-
urally to the problem of immediate ver-
sus historical causation. There are ac-
tually two issues here. The first con-
cerns at what point or points in time
can events exert their effects on a sys-
tem. The second and much more com-
plicated issue is temporal symmetry or
asymmetry, that is, what conditions
might lead to a "memory."

Delayed feedback has been the sub-
ject of dynamical systems theory for
some time. But there is a major devel-
oping (and very complex) field in ap-
plied mathematics that is investigating
delay differential and difference equa-
tions. These have applications in many
fields, including the analysis of growth
of populations and the spread of epi-
demics. Delay of consequences can
produce vexing and complex effects,
as everyone knows, and delay models
confirm this. However simple or com-
plex delay effects might be, the differ-
ence between the immediate and the
historical is a parameter difference, not
a conceptual one. How much of a de-
lay of effect is needed to make it his-
torical? A great deal of nonsense has
been written about taste aversion, for
example, asserting that such an effect
should overthrow all our ideas about
conditioning, as if we already had
some law requiring the interstimulus
interval to be less than some particular
value.
The more interesting issue is tem-

poral asymmetry. This deliciously deep
and controversial topic is one of the
most vexing in all of science, and de-
spite many years of argument, there

seems to be no clear consensus (see,
e.g., Coveney & Highfield, 1990).
Without getting into all the details, ir-
reversibility is an inherent part of com-
plex systems, many of which, however,
cannot be said to have a memory. But
I do not think it is necessary to go fur-
ther into the deep relations among
probability, temporal symmetry break-
ing, and dynamics. We can approach
the problem with a few simple exam-
ples. If we magnetize an iron bar by
placing it into a current-carrying coil,
we can demonstrate that particular his-
tory at any time subsequently. We have
given the bar a history. We can even
show a hysteresis effect. If we reverse
the current and thus the magnetic ori-
entation, the course of change in mag-
netism will follow a different function
than the original. The history manifests
an irreversibility. Hysteresis effects
show up in many other dynamical sit-
uations as well, including those inves-
tigated via catastrophe theory (see,
e.g., Coveney & Highfield, 1995).

Staddon (1993) and Killeen (1981)
have explored quantitative models of
behavior change that incorporate his-
tories; that is, present behavior is not
simply under control of the immediate
context, but a cumulative history of re-
sponse-consequence events. What is
more, equivalent behaviors could have
resulted from different histories. Stad-
don (1993) emphasized how this dif-
fers from classical Newtonian mechan-
ics, under which, given the initial con-
ditions, the system's future was as-
sured. We have already seen that for
many everyday systems to which one
can apply Newton's laws, the future is
unknown. The physicist has to wait
like everybody else. What is more, a
cumulative effects model like Stad-
don's transforms initial conditions into
dynamic variables feeding back into
the system-a recipe for complexity if
there ever was one.

THE FUNCTION OF
A FUNCTIONAL RELATION
As mentioned at the beginning of

this essay, Zeiler (1992) has taken be-
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havior analysts to task for emphasizing
the search and generation of functional
relations in idealized laboratory situa-
tions over the issue of what functions
behavior may serve. An essential issue
here is what kinds of behavior should
we be studying, and in what ways. In
other words, what is important, and
how do we know? There are obviously
no simple answers to such questions;
they arise in every science, and history
changes the answers. One could argue
that sciences generally develop
through first tackling the simple with
simple methods, then advance to the
complex. We could not have had dy-
namical systems theory and practice
without Galileo and Newton. Yet such
an argument is too facile. For one
thing, in the case of dynamical sys-
tems, the same or similar principles ap-
ply to both the simple and the com-
plex. Has traditional behavior analysis
given us some basic principles to apply
to the kinds of behavior Zeiler says we
should be investing our time in?

In making his argument, Zeiler
(1992) points to his results that the ef-
fect of certain contingencies can de-
pend upon whether subjects are ex-
posed to open or closed economies.
This is an important finding to be sure,
especially if it has wide generality. His
interpretation of these results pins on
issues of what behavior accomplishes,
a form of explanation not common to
behavior analysts. Answers to what
gets accomplished call for some un-
derlying theory, like optimality or me-
lioration or satisficing or whatever. But
these are constraints on a dynamical
system. They are similar to principles
of least action, or conservation of en-
ergy, or the second law of thermody-
namics. Thus, in asking, for example,
whether some class of behavior is op-
timal under certain initial and bound-
ary conditions, we are applying a the-
oretical, quantitative dynamical con-
straint in the same way a physicist
might invoke Fermat's principle that
light always travels along the path of
least time between points.

It is appropriate to finish this discus-

sion with Mayr's treatment of the sort
of behavior I think Zeiler (1992) is
talking about, namely goal-directed be-
havior. Mayr (1988) calls goal-directed
processes "perhaps the most character-
istic feature of the world of living or-
ganisms" (p. 45). He is very careful to
avoid the absurdities of teleology. He
calls goal-seeking behavior "teleo-
nomic." Teleonomic behavior is de-
fined as a "process or behavior ...
which owes its goal-directedness to the
operation of a program" (p. 45). A
program in turn is defined as "coded
or prearranged information that con-
trols a process (or behavior) leading it
toward a given end" (p. 49). He adds,
"My definition of a program is delib-
erately chosen in such a way as to
avoid drawing a line between seeming-
ly 'purposive' behavior in organisms
and in man-made machines" (p. 49). I
have already alluded to the mathemat-
ical equivalence of a program and a
dynamical system. So Mayr takes us
full circle.

CODA
The one endeavor that binds all sci-

ences together is the search for and un-
derstanding of patterns in nature-the
movements of the spheres, the flow
and turbulence of a stream, the shape
of a snowflake, the branching of a tree,
the crinkliness of a coastline, the spots
on a leopard, and the course of true
love. I have tried in this mingled yarn
to suggest that the dynamical systems
approach to complexity provides not
only a means to understand the devel-
opment of patterns of many kinds, but
in doing so, also provides a bridge be-
tween seemingly very different, if not
seemingly antagonistic, conceptual
perspectives. Casti ends his book on
complexity with a quote from the nov-
elist Yourcenar that I cannot resist re-
peating here:
The rules of the game: learn everything, read
everything, inquire into everything. ... When
two texts, or two assertions, or perhaps two
ideas, are in contradiction, be ready to reconcile
them rather than cancel one by the other; regard
them as two different facets, or two successive
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stages, of the same reality, a reality convincingly
human just because it is complex. (1994, p. 278)
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